Acta Crystallographica Section E

Structure Reports
 Online

(1,4-Diazacycloheptane- $\left.\kappa^{2} N, N^{\prime}\right)(2$-thioxo-1,3-dithiole-4,5-dithiolato- $\kappa^{2} S^{4}, S^{5}$)nickel(II)

ISSN 1600-5368

Yi-Hang Wen ${ }^{\text {a }}$ * and Qi-Wei Zhang ${ }^{\text {a,b }}$

${ }^{\text {a }}$ Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical
Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Lishui University, Lishui, Zhejiang 323000, People's Republic of China

Correspondence e-mail: wyh@zjnu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.026$
$w R$ factor $=0.074$
Data-to-parameter ratio $=19.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

The title complex, $\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$ or $[\mathrm{Ni}($ dmit $)($ dach $)]$ (dach is 1,4-diazacycloheptane and dmit is 2-thioxo-1,3-dithiole-4,5-dithiolate), crystallizes with two independent molecules per asymmetric unit. In each molecule, the central $\mathrm{Ni}^{\mathrm{II}}$ atom is coplanar with the two S atoms of one dmit ligand and two N atoms of one dach ligand. In the crystal structure, some weak S...S interactions and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are present. These interactions generate a three-dimensional framework.

Comment

Over the past decades, transition metal complexes with bis(dithiolate) ligands, such as dmit, have been widely studied for their semiconducting, conducting, and even superconducting properties (Akutagawa et al., 2001; Aonuma et al., 2001). Additionally, diazamesocyclic ligands, such as dach, occupy an important role in coordination chemistry because of their manifestation of unique conformations, exceptionally strong ligand fields and their potential for further functionalization (Mills et al., 1990; Musker, 1992; Grapperhaus \& Darensbourg, 1998). On combining bis(dithiolate) and diazamesocyclic ligands as a mixed-ligand system to react with transition metal salts, a series of new coordination complexes has been obtained. Here, we present the synthesis and crystal structure of the title compound, $[\mathrm{Ni}($ dach $)($ dmit $)]$, (I).

The asymmetric unit of complex (I) is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. In each molecule, the central Ni atom has a squareplanar coordination environment, and is surrounded by two S atoms of one dmit ligand, with $\mathrm{Ni}-\mathrm{S}$ distances 2.1505 (12)2.1584 (10) \AA, and two N atoms of a dach ligand, with $\mathrm{Ni}-\mathrm{N}$ distances 1.925 (2)-1.933 (2) A. The five S of atoms of the dmit ligand are approximately coplanar; the dihedral angel of two planes defined by $\mathrm{S} 4 / \mathrm{S} 5 / \mathrm{C} 2 / \mathrm{C} 3$ and $\mathrm{S} 1 / \mathrm{S} 2 / \mathrm{S} 3 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3$ is 5.38 (2) ${ }^{\circ}$. The independent molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds to form a dimer (Table 2).

In the crystal structure of (I) there are some weak S. \cdots S interactions [$\mathrm{S} 5 \cdots \mathrm{~S} 8^{\mathrm{i}}=3.5406$ (14) \AA; symmetry operation: (i) $1-x,-y,-z]$. Symmetry-related molecules are also conneced via $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds; details are given in Table 2 and Fig. 2.

Received 2 November 2005 Accepted 28 November 2005 Online 7 December 2005

Figure 1
Views of the two independent molecules of complex (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. The two molecules are not shown in their correct relative orientation.

Figure 2
A view, approximately along the a axis, of the crystal packing of (I). The $\mathrm{S} \cdots \mathrm{S}$ and $\mathrm{CH} \cdots \mathrm{S}$ interactions are depicted by dashed lines.

Experimental

$[$ Tetrabutylammonium $]\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ and $\left[\mathrm{Ni}(\mathrm{DACH})_{2}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OAc})_{2}$ were prepared according to the literature procedures (Sun et al., 1996; Guo, 2002; Guo et al., 2001). These two compounds (ratio 1:1) were dissolved separately in acetonitrile at room temperature and allowed to slowly diffuse in an H -shaped tube. After a few weeks, red blockshaped crystals, suitable for X-ray diffraction analysis, were obtained.

Crystal data

[$\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2}\right)$]	$Z=4$
$M_{r}=355.21$	$D_{x}=1.791 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.3290$ (19) \AA	Cell parameters from 2987
$b=11.997$ (2) A	reflections
$c=13.169$ (3) \AA	$\theta=1.7-27.4{ }^{\circ}$
$\alpha=65.20$ (3) ${ }^{\text {d }}$	$\mu=2.24 \mathrm{~mm}^{-1}$
$\beta=82.81$ (3) ${ }^{\circ}$	$T=293$ (2) K
$\gamma=80.64$ (3) ${ }^{\circ}$	Block, red
$V=1317.5$ (6) \AA^{3}	$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$
Data collection	
Rigaku R-AXIS RAPID diffractometer	5887 independent reflections 4265 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.020$
Absorption correction: multi-scan	$\theta_{\text {max }}=27.4^{\circ}$
(SADABS; Sheldrick, 1996)	$h=-12 \rightarrow 12$
$T_{\text {min }}=0.590, T_{\text {max }}=0.639$	$k=-15 \rightarrow 15$
9484 measured reflections	$l=-17 \rightarrow 16$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0378 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.52 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.43 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Ni1-N2	$1.925(2)$	$\mathrm{Ni} 2-\mathrm{N} 3$	$1.933(2)$
Ni1-N1	$1.930(2)$	$\mathrm{Ni} 2-\mathrm{N} 4$	$1.933(2)$
Ni1-S5	$2.1568(12)$	$\mathrm{Ni} 2-\mathrm{S} 10$	$2.1505(12)$
Ni1-S4	$2.1584(10)$	$\mathrm{Ni} 2-\mathrm{S} 9$	$2.1533(9)$
N2-Ni1-N1	$80.11(10)$	$\mathrm{N} 3-\mathrm{Ni} 2-\mathrm{N} 4$	$79.65(10)$
N2-Ni1-S5	$171.07(7)$	$\mathrm{N} 3-\mathrm{Ni} 2-\mathrm{S} 10$	$169.31(8)$
N1-Ni1-S5	$93.09(8)$	$\mathrm{N} 4-\mathrm{Ni} 2-\mathrm{S} 10$	$92.47(7)$
N2-Ni1-S4	$92.66(7)$	$\mathrm{N} 3-\mathrm{Ni} 2-\mathrm{S} 9$	$94.03(8)$
N1-Ni1-S4	$172.73(7)$	$\mathrm{N} 4-\mathrm{Ni} 2-\mathrm{S} 9$	$173.05(7)$
S5-Ni1-S4	$94.03(4)$	$\mathrm{S} 10-\mathrm{Ni} 2-\mathrm{S} 9$	$94.16(4)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~S} 10$	$0.88(2)$	$2.87(2)$	$3.527(3)$	$133(2)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~S} 4^{\mathrm{i}}$	$0.86(2)$	$2.75(2)$	$3.416(3)$	$136(2)$
$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{~S} 1^{\text {ii }}$	$0.87(3)$	$2.60(3)$	$3.401(3)$	$152(2)$
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{~S} 5$	$0.89(2)$	$2.49(2)$	$3.374(3)$	$173(2)$
$\mathrm{C} 7-\mathrm{H} 7 B \cdots \mathrm{~S} 9^{\text {iii }}$	0.97	2.83	$3.646(3)$	142
$\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{~S} 6^{\text {iv }}$	0.97	2.87	$3.771(4)$	155
$\mathrm{C} 16-\mathrm{H} 16 B \cdots \mathrm{~S} 6^{\text {iii }}$	0.97	2.81	$3.669(4)$	148
Symmetry codes: (i) $-x,-y+1,-z ;$	(ii) $-x,-y,-z+1 ;$ (iii) $-x,-y,-z ;$ (iv)			
$x, y, z+1$.				

The H atoms bonded to the C atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H} 0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent C -atom). The H atoms bonded to the N atoms were located in difference Fourier maps and refined $[\mathrm{N}-\mathrm{H}$ distance $=$ $0.857(16)-0.894(17) \AA]$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.

This work was supported financially by the Foundation of Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces.

References

Akutagawa, T., Hasegawa, T., Nakamura, T., Takeda, S., Inabe, T., Sugiura, K., Sakata, Y. \& Underhill, A. E. (2001). Chem. Eur. J. 7, 4902-4912.
Aonuma, S., Casellas, H., Faulmann, C., Garreau de Bonneval, B., Malfant, I., Cassoux, P., Lacroix, P. G., Hosokoshi, Y. \& Inoue, K. (2001). J. Mater. Chem. 11, 337-345.
Bruker (2002). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Grapperhaus, C. A. \& Darensbourg, M. Y. (1998). Acc. Chem. Res. 31, 451459.

metal-organic papers

Guo, Y. (2002). PhD Thesis, Nankai University, China.
Guo, Y., Du, M. \& Bu, X. (2001). Acta Cryst. E57, m280-m282.
Mills, D. K., Reibenspies, J. H. \& Darensbourg, M. Y. (1990). Inorg. Chem. 29, 4364-4366.
Musker, W. K. (1992). Coord. Chem. Rev. 117, 133-157.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sun, S., Wu, D. \& Zhu, D. (1996). Chin. Chem. Lett. 7, 1054-1056.

